

Evaluation of wear properties and durability by DLC film ^OKengo Sakurai¹, Kazushige Namiki², Hideki Nakamori³, Masanori Hiratsuka³, Kenji Hirakuri¹ ¹Tokyo Denki University, ²Namiki-Mi Co. Ltd, ³Nanotec Co. Ltd

E-mail address : 17kmj18@ms.dendai.ac.jp

Medical devices

Diamond-like carbon (DLC)

Main materials of current medical devices \Rightarrow Metal such as stainless-steel (SUS) and titanium

 \Rightarrow Deterioration of medical devices \Rightarrow Elution of allergic substances

Amorphous carbon thin film with both graphite and diamond structure

•Raman spectroscopy, Scanning Electron Microscope, etc... ★ Wear properties of DLC coating •Ball-on disc test (ISO / DIS 18535 standard reference) etc...

Sterilization test

Sterilization condition		Immersion condition with acidic solution	
Time	15 [min]	Time	30 [min]
Temperature	126 [°C]	Acid	pH=1.023
		concentration	(22.1°C)
		Temperature	70±5[°C]

1 cycle:

High pressure steam sterilization and next immersion test with acidic solution

 \star Analyzation substrate in each cycle \Rightarrow Total 100 cycles

DLC has durability against sterilization and acidic solution.

50cycles

Surface condition of SUS

70 cvcles

100 cycles

<u>50 μm</u>	<u>50 μm</u>	50 μm			
0 cycle	10 cycles	30 cycles			
<u>50 μm</u>	50 μm	50 μm			
50 cycles	an ter an area from the second	100 cycles			
Surface condition of DLC/SUS					

Surface roughness mesurement

Supply power

Treatment time

surface treatment

200 [W]

2 [min]

Surface roughness of SUS and DLC/SUS

Mean roughness of each sample					
Cycle	SUS	DLC/SUS			
	Mean roughn	Mean roughness (Ra)[nm]			
0	10.4	5.76			
30	24.7	7.11			
50	106.0	8.53			
70	71.3	8.40			
100	47.5	8.36			

The Ra value of the DLC coating was extremely low. \Rightarrow It was found that the DLC makes flat.

Wear property of DLC coating

Conclusions

50 μm

Veight Al		Samp	Digitation Digitation Cethane rubbe	er		
Schematic diagram of measurement of friction coefficient						
Friction coefficient of each samples						
Weight [g]	Urethane rubber	SUS	DLC/SUS	O-DLC/SUS		
			(n=5)			
0	2.79	1.14	2.29	1.01		
100	1.54	0.73	1.33	0.67		
200	1.24	0.87	1.14	0.59		
300	1.27	0.87	0.97	0.60		
The friction coefficient of O-DLC/SUS						

is lower than that of each samples.

By DLC coating 1 Acid tolerance and sterilization test **2 Reduction of friction to living body**

• Evaluation of durability against sterilization and acidic solution

 \Rightarrow DLC has durability against sterilization and acidic solution.

• Wear property of DLC coating \Rightarrow DLC has high wear property against mechanical and under simulated living environment.

This work was supported by JKA and its promotion funds from KEIRIN RACE. 2018M-113

